วันพฤหัสบดีที่ 27 พฤษภาคม พ.ศ. 2553

Power Supply

เพาเวอร์ซัพพลาย (Power Supply)

อุปกรณ์ชิ้นหนึ่งในเครื่องคอมพิวเตอร์ที่เรามักจะมองข้ามไปและเป็นอุปกรณ์ที่สำคัญเพราะถ้าขาดเจ้าตัวนี้แล้วเครื่องคอมพิวเตอร์ตัวเก่งของเราก็เปรียบเสมือนกล่องเหล็กธรรมดาๆใช้การอะไรไม่ได้ อุปกรณ์ชิ้นนี้ก็คือ แหล่งจ่ายไฟ หรือที่เรามักจะเรียกกันว่า เพาเวอร์ซัพพลาย (Power Supply)นั่นเอง
เพาเวอร์ซัพพลายมีหน้าที่หลักก็คือ เปลี่ยนแรงดันกระแสสลับจากไฟบ้าน 220โวลท์เอซีี ให้เป็นแรงดันไฟตรงดีซีที่คอมพิวเตอร์ต้องใช้
แหล่งจ่ายไฟคอมพิวเตอร์ส่วนบุคคลหรือคอมพิวเตอร์พีซีนั้น ส่วนใหญ่จะบรรจุในเคสด้านหลังถ้ามองไปที่หลังเคสจะเห็นก่องเหล็กสี่เหลี่ยมมีช่องเสียบสายไฟและพัดลมเพื่อระบายความร้อน

เพาเวอร์ซัพพลาย Power Supply
อุปกรณ์ชิ้นหนึ่งในเครื่องคอมพิวเตอร์ที่เรามักจะมองข้ามไปและเป็นอุปกรณ์ที่สำคัญเพราะถ้าขาดเจ้าตัวนี้แล้วเครื่องคอมพิวเตอร์ตัวเก่งของเราก็เปรียบเสมือนกล่องเหล็กธรรมดาๆใช้การอะไรไม่ได้ อุปกรณ์ชิ้นนี้ก็คือ แหล่งจ่ายไฟ หรือที่เรามักจะเรียกกันว่า เพาเวอร์ซัพพลาย (Power Supply)นั่นเอง
เพาเวอร์ซัพพลายมีหน้าที่หลักก็คือ เปลี่ยนแรงดันกระแสสลับจากไฟบ้าน 220โวลท์เอซีี ให้เป็นแรงดันไฟตรงดีซีที่คอมพิวเตอร์ต้องใช้
แหล่งจ่ายไฟคอมพิวเตอร์ส่วนบุคคลหรือคอมพิวเตอร์พีซีนั้น ส่วนใหญ่จะบรรจุในเคสด้านหลังถ้ามองไปที่หลังเคสจะเห็นก่องเหล็กสี่เหลี่ยมมีช่องเสียบสายไฟและพัดลมเพื่อระบายความร้อน
เพาเวอร์ซัพพลายจะใช้เทคโนโลยีที่เราเรียกว่า สวิตชิ่งเพาเวอร์ซัพพลายคือการเปลี่ยนแรงดันอินพุตกระแสสลับเอซี ให้เป็นแรงดันตํ่ากระแสตรงแรงดันที่ออกแบบให้ออกมาจากเพาเวอร์ซัพพลายมีอยู่ทั่วไป 3ระดับคือ3.3โวลท์ , 5โวลท์ และ 12โวลท์ โดยที่แรงดัน3.3โวลท์และแรงดัน5โวลท์จะนำไปใช้ในวงจรดิจิตอล ส่วนแรงดัน12โวลท์ถูกนำไปใช้ในการหมุนมอเตอร์ของดิสท์ไดรฟ์และพัดลมระบายความร้อน

เมื่อหลายปีก่อนบางท่านที่เคยใช้คอมพิวเตอร์ยุคแรกๆตั้งแต่รุ่น 8088จนถึงรุ่น 486 คงจะจำได้ว่าสวิตช์เปิดปิดของคอมพิวเตอร์รุ่นเก่าพวกนี้จะแตกต่างจากสวิตช์ปิดเปิดคอมพิวเตอร์ในปัจจุบัน ด้วยเหตุว่า คอมพิวเตอร์รุ่นแรกๆนั้น จะใช้เพาเวอร์ซัพพลายแบบ AT ซึ่งมีสวิตช ์เพื่อควบคุมการปิดเปิดเพาเวอร์ซัพพลายโดยตรง และใช้สวิตช์กดติดค้างคล้ายๆกับสวิตช์เปิดปิดไฟบ้าน ซึ่งต่างจากคอมพิวเตอร์ในปัจจุบันจะใช้สวิตช์แบบกดติดปล่อยดับ สวิตช์นี้จะไม่ต่อเข้ากับเพาเวอร์ซัพพลายโดยตรงแต่จะต่อกับแผงวงจรเมนบอร์ดของคอมพิวเตอร์ โดยใช้การควบคุมการปิดเปิดจากโปรแกรมปฎิบัติงาน สั่งให้แผงเมนบอร์ดปิดเพาเวอร์ซํพพลาย เมื่อเรากดสวิตช์นี้ เมนบอร์ดจะส่งแรงดัน 5โวลท์ไปยังส่วนควบคุมในเพาเวอร์ํซัพพลายเพื่อเปิดปิดการทำงานของตัวมันแรงดันไฟตรงนี้เราเรียกว่าแรงดัน VSB เพาเวอร์ซัพพลายรุ่นใหม่นี้เราเรียกแบบว่า แบบ ATX


ถ้าพูดถึงเทคโนโลยีสวิตชิ่งในเพาเวอร์ซัพพลายจะเห็นได้ว่ามีการพัฒนามาตั้งแต่ปี คศ.1980 ในตอนนั้นเพาเวอร์ซัพพลายมีขนาดใหญ่และนํ้าหนักมากที่เป็นเช่นนั้นเพราะว่าในตัวเพาเวอร์ซํพพลายต้องใช้หม้อแปลงและตัวเก็บประจุที่มีขนาดใหญ่ ซึ่งในปัจจุบันได้พัฒนาลดขนาดและนํ้าหนักของเพาเวอร์ซัพพลายลงได้มาก
เทคโนโลยีสวิตชิ่งไม่ใช่แค่นำไปใช้แต่คอมพิวเตอร์เท่านั้นแต่ยังได้นำไปใช้ในการสร้างไฟกระแสสลับจากไฟตรง12โวลท์ของแบตเตอรี่รถยนต์เพื่อไปจ่ายให้เครื่องใช้ไฟฟ้า เช่นทีวี วิดีโอ ดังจะเห็นได้จากรถตู้หรือรถทัวร์เค้าใช้กัน วงจรพวกนี้เราเรียกว่า อินเวอร์เตอร์

เพาเวอร์ซํพพลายที่มีขายตามท้องตลาดนั้นมีหลายราคา หลายกำลังวัตต์ให้เลือก ตั้งแต่200วัตต์ จนถึง 400วัตต์ขึ้นอยู่กับว่าคอมพิวเตอร์เราใช้ทรัพยากรหรือว่ามีอุปกรณ์ต่อมากน้อยเพียงใด


เพาเวอร์ซัพพลาย Power Supply
อุปกรณ์ชิ้นหนึ่งในเครื่องคอมพิวเตอร์ที่เรามักจะมองข้ามไปและเป็นอุปกรณ์ที่สำคัญเพราะถ้าขาดเจ้าตัวนี้แล้วเครื่องคอมพิวเตอร์ตัวเก่งของเราก็เปรียบเสมือนกล่องเหล็กธรรมดาๆใช้การอะไรไม่ได้ อุปกรณ์ชิ้นนี้ก็คือ แหล่งจ่ายไฟ หรือที่เรามักจะเรียกกันว่า เพาเวอร์ซัพพลาย (Power Supply)นั่นเอง
เพาเวอร์ซัพพลายมีหน้าที่หลักก็คือ เปลี่ยนแรงดันกระแสสลับจากไฟบ้าน 220โวลท์เอซีี ให้เป็นแรงดันไฟตรงดีซีที่คอมพิวเตอร์ต้องใช้
แหล่งจ่ายไฟคอมพิวเตอร์ส่วนบุคคลหรือคอมพิวเตอร์พีซีนั้น ส่วนใหญ่จะบรรจุในเคสด้านหลังถ้ามองไปที่หลังเคสจะเห็นก่องเหล็กสี่เหลี่ยมมีช่องเสียบสายไฟและพัดลมเพื่อระบายความร้อน
เพาเวอร์ซัพพลายจะใช้เทคโนโลยีที่เราเรียกว่า สวิตชิ่งเพาเวอร์ซัพพลายคือการเปลี่ยนแรงดันอินพุตกระแสสลับเอซี ให้เป็นแรงดันตํ่ากระแสตรงแรงดันที่ออกแบบให้ออกมาจากเพาเวอร์ซัพพลายมีอยู่ทั่วไป 3ระดับคือ3.3โวลท์ , 5โวลท์ และ 12โวลท์ โดยที่แรงดัน3.3โวลท์และแรงดัน5โวลท์จะนำไปใช้ในวงจรดิจิตอล ส่วนแรงดัน12โวลท์ถูกนำไปใช้ในการหมุนมอเตอร์ของดิสท์ไดรฟ์และพัดลมระบายความร้อน

เมื่อหลายปีก่อนบางท่านที่เคยใช้คอมพิวเตอร์ยุคแรกๆตั้งแต่รุ่น 8088จนถึงรุ่น 486 คงจะจำได้ว่าสวิตช์เปิดปิดของคอมพิวเตอร์รุ่นเก่าพวกนี้จะแตกต่างจากสวิตช์ปิดเปิดคอมพิวเตอร์ในปัจจุบัน ด้วยเหตุว่า คอมพิวเตอร์รุ่นแรกๆนั้น จะใช้เพาเวอร์ซัพพลายแบบ AT ซึ่งมีสวิตช ์เพื่อควบคุมการปิดเปิดเพาเวอร์ซัพพลายโดยตรง และใช้สวิตช์กดติดค้างคล้ายๆกับสวิตช์เปิดปิดไฟบ้าน ซึ่งต่างจากคอมพิวเตอร์ในปัจจุบันจะใช้สวิตช์แบบกดติดปล่อยดับ สวิตช์นี้จะไม่ต่อเข้ากับเพาเวอร์ซัพพลายโดยตรงแต่จะต่อกับแผงวงจรเมนบอร์ดของคอมพิวเตอร์ โดยใช้การควบคุมการปิดเปิดจากโปรแกรมปฎิบัติงาน สั่งให้แผงเมนบอร์ดปิดเพาเวอร์ซํพพลาย เมื่อเรากดสวิตช์นี้ เมนบอร์ดจะส่งแรงดัน 5โวลท์ไปยังส่วนควบคุมในเพาเวอร์ํซัพพลายเพื่อเปิดปิดการทำงานของตัวมันแรงดันไฟตรงนี้เราเรียกว่าแรงดัน VSB เพาเวอร์ซัพพลายรุ่นใหม่นี้เราเรียกแบบว่า แบบ ATX


ถ้าพูดถึงเทคโนโลยีสวิตชิ่งในเพาเวอร์ซัพพลายจะเห็นได้ว่ามีการพัฒนามาตั้งแต่ปี คศ.1980 ในตอนนั้นเพาเวอร์ซัพพลายมีขนาดใหญ่และนํ้าหนักมากที่เป็นเช่นนั้นเพราะว่าในตัวเพาเวอร์ซํพพลายต้องใช้หม้อแปลงและตัวเก็บประจุที่มีขนาดใหญ่ ซึ่งในปัจจุบันได้พัฒนาลดขนาดและนํ้าหนักของเพาเวอร์ซัพพลายลงได้มาก
เทคโนโลยีสวิตชิ่งไม่ใช่แค่นำไปใช้แต่คอมพิวเตอร์เท่านั้นแต่ยังได้นำไปใช้ในการสร้างไฟกระแสสลับจากไฟตรง12โวลท์ของแบตเตอรี่รถยนต์เพื่อไปจ่ายให้เครื่องใช้ไฟฟ้า เช่นทีวี วิดีโอ ดังจะเห็นได้จากรถตู้หรือรถทัวร์เค้าใช้กัน วงจรพวกนี้เราเรียกว่า อินเวอร์เตอร์
เพาเวอร์ซํพพลายที่มีขายตามท้องตลาดนั้นมีหลายราคา หลายกำลังวัตต์ให้เลือก ตั้งแต่200วัตต์ จนถึง 400วัตต์ขึ้นอยู่กับว่าคอมพิวเตอร์เราใช้ทรัพยากรหรือว่ามีอุปกรณ์ต่อมากน้อยเพียงใด
อุปกรณ์ในคอมพิวเตอร์ กำลังวัตต์ที่อุปกรณ์ใช้

หน่วยประมวลผล CPU 15 - 45 วัตต์

Mainboard 20 - 30 วัตต์

Hard disk 5 - 15 วัตต์

CD-ROM drive 10 - 25 วัตต์

หน่วยความจำ RAM 5 - 11 วัตต์

Floppy disk drive 5 วัตต์

การ์แสดงผล AGP 20 - 30 วัตต์

การ์ด PCI เช่นการ์ดเสียง 5 วัตต์

การ์ด SCSI 20 - 25 วัตต์

การ์ด LAN 4 วัตต์ พัดลมระบายความร้อน 2 - 4 วัตต์


จะเห็นได้ว่ากำลังไฟทั้งหมดถ้ารวมๆกันแล้วก็ไม่เกิน 250วัตต์ จึงพอเพียงสำหรับเพาเวอร์ซํพพลายที่มีขายในปัจจุบัน
ปัญหาที่เราพบบ่อยๆกับเจ้าตัวเพาเวอร์ซํพพลายก็คือความร้อนที่เกิดจากตัวมันเองโดยทั่วไปเพาเวอร์ซัพพลายจะมีพัดลมช่วยระบายความร้อน แต่ถ้าพัดลมนั้นเกิดเสื่อมสภาพ หมุนช้าลงหรือหยุดหมุนไป อุปกรณ์อิเล็กทรอนิกส์ในเพาเวอร์ซัพพลายก็จะร้อนขึ้นจนอาจจะไหม้ได้ หลังจากนั้นคอมพิวเตอร์ก็จะหยุดทำงานพร้อมกับมีกลิ่นไหม้ตามมา ฉะนั้นถ้าเป็นไปได้ก็ควรสำรวจพัดลมหรือฟังเสียงพัดลมของเพาเวอร์ซัพพลาย ถ้าพัดลมหมุนช้าหรือหยุดหมุนไปก็ให้ปิดเครื่องทันที ถ้ามีฝีมือหน่อยก็ถอดฝาออกมาแล้วก็ซื้อพัดลมขนาดเดียวกันมาเปลี่ยนแทน หรือถ้าไม่อยากยุ่งยากก็ซื้อใหม่ทั้งชุดเลย ปัจจุบันราคาของเพาเวอร์ซัพพลายไม่แพงมากนัก อยู่ระหว่างประมาณ 350 ถึง 500บาทขึ้นอยู่กับกำลังวัตต์ที่ใช้และรูปแบบของเพาเวอร์ซัพพลาย เวลาเปลี่ยนก็ควรปลดสายไฟออกทั้งหมดก่อนเพื่อป้องกันความเสียหายที่จะตามมา
ด้วยเหตุนี้ผู้ผลิตเมนบอร์ดจึงได้สร้างเมนบอร์ที่สามารถอ่านค่าความเร็วของพัดลมทุกตัวในคอมพิวเตอร์ รวมทั้งพัดลมของเพาเวอร์ซํพพลายด้วย โดยเมื่อพัดลมหมุนช้าลง หน่วยควบคุมในเมนบอร์ดก็จะส่งสัญญาณผ่านโปรแกรมมอนิเตอร์เตือนผู้ใช้ที่หน้าจอ ก่อนที่จะดับเครื่องตัวเองเพื่อป้องกันความเสียหายที่จะตามมา

CD-ROM

CD-ROM (Compack Disk Read only Memory)

นปี 1982 CD-DA (compact disk-digital audio)ได้เป็นที่รู้จักของตลาด ถูกพัฒนาโดยบริษัท Phillip กับ Sony ใช้ในการบันทึกเสียง ต่อมาในปี 1985 เทคโนโลยีได้ขยายตัวกว้างไปสู่วงการคอมพิวเตอร์ในรูปแบบของอุปกรณ์ในการเก็บข้อมูล ซีดีรอมเป็นอุปกรณ์ที่ใช้เป็นส่วนประกอบอยู่รวมกับคอมพิวเตอร์และเป็นที่ยอมรับอยู่ในปัจจุบัน ซึ่งเป็นอุปกรณ์ที่ใช้ในการอ่านแผ่นซีดี ซึ่งมีอยู่ 2 แบบ คือแบบฟันเฟืองซึ่งจะมีเสียงเมื่อมีการทำงานและแบบสายพานซึ่งจะมีเสียงเงียบกว่า ขณะเริ่มทำงานจะแบ่งเป็นแทร็กและเซ็กเตอร์เหมือนกับแผ่นดิสก์ แต่เซ็กเตอร์ในซีดีรอมจะมีขนาดเท่ากัน ทุกเซ็กเตอร์ ไดร์ฟซีดีรอมเริ่มทำงานมอเตอร์จะเริ่มหมุนด้วยความเร็วไม่คงที่ ทั้งนี้เพื่อให้อัตราเร็วในการอ่านข้อมูลจากซีดีรอมคงที่สม่ำเสมอทุกเซ็กเตอร์ขึ้นอยู่กับวงของแผ่นซีดีที่อยู่รอบนอกหรือใน หลังจากมอเตอร์หมุนแสงเลเซอร์จะฉายลงซีดีรอม โดยลำแสงจะถูกโฟกัสด้วยเลนส์ที่เคลื่อนตำแหน่งได้ โดยการทำงานของขดลวด ลำแสงเลเซอร์จะทะลุผ่านไปที่ซีดีรอมแล้วถูกสะท้อนกลับ ที่ผิวหน้าของซีดีรอมจะเป็น หลุมเป็นบ่อ ส่วนที่เป็นหลุมลงไปเรียก "แลนด์" สำหรับบริเวณที่ไม่มีการเจาะลึกลงไปเรียก "พิต" ผิวสองรูปแบบนี้ใช้แทนการเก็บข้อมูลในรูปแบบของ 1 และ 0 แสงเมื่อถูกพิตจะกระจายไปไม่สะท้อนกลับ แต่เมื่อแสงถูกเลนส์จะสะท้อนกลับผ่านแท่งปริซึม จากนั้นหักเหผ่านแท่งปริซึมไปยังตัวตรวจจับแสงอีกที ทุกๆช่วงของลำแสงที่กระทบตัวตรวจจับแสงจะกำเนิดแรงดันไฟฟ้า หรือเกิด 1 และ 0 ที่ทำให้คอมพิวเตอร์สามารถเข้าใจได้ ส่วนการบันทึกข้อมูลลงแผ่นซีดีรอมนั้นต้องใช้แสงเลเซอร์เช่นกัน โดยมีลำแสงเลเซอร์จากหัว



บันทึกของเครื่อง บันทึกข้อมูลส่องไปกระทบพื้นผิวหน้าของแผ่น ถ้าส่องไปกระทบบริเวณใดจะทำให้บริเวณนั้นเป็นหลุมขนาดเล็ก บริเวณทีไม่ถูกบันทึกจะมีลักษณะเป็นพื้นเรียบสลับกันไปเรื่อยๆตลอดทั้งแผ่น แผ่นซีดีรอมเป็นสื่อในการเก็บข้อมูลแบบออปติคอล (Optical Storage) ใช้ลำแสงเลเซอร์ในการอ่านข้อมูล แผ่นซีดีรอมทำมาจากแผ่นพลาสติกเคลือบด้วยอลูมิเนียม เพื่อสะท้อนแสงเลเซอร์ที่ยิงมา เมื่อแสงเลเซอร์ที่ยิงมาสะท้อนกลับไป ที่ตัวอ่านข้อมูลที่เรียกว่า Photo Detector ก็อ่านข้อมูลที่ได้รับกลับมาว่าเป็นอะไร และส่งค่า 0 และ 1 ไปให้กลับซีพียู เพื่อนำไปประมวลผลต่อไป ความเร็วของไดร์ฟซีดีรอม มีหลาย ไดร์ฟตัวแรกที่เกิดขึ้นมามีความเร็ว 1x จะมีอัตราในการโอนถ่ายข้อมูล (Data Transfer Rate) 150 KB ต่อวินาที หรือ 153,600 Byteต่อวินาที
ความเร็วในการเข้าถึงข้อมูล (Access Time) ความเร็วในการเข้าถึงข้อมูลคือ ช่วงระยะเวลาที่ไดร์ฟซีดีรอมสามารถอ่านข้อมูลจากแผ่นซีดีรอม แล้วส่งไป ประมวลผล หน่วยที่ใช้วัดความเร็วนี้คือ มิลลิวินาที (millisecond) หรือ ms ปกติแล้วความเร็วมาตราฐานที่ เป็นของไดร์ฟซีดีรอม 4x ก็คือ 200 ms แต่ตัวเลขนี้จะเป็นตัวเลขเฉลี่ยเท่านั้น เป็นไปไม่ได้แน่นอนว่าไดร์ฟ ซีดีรอมจะมีความเร็วในการเข้าถึงข้อมูลบนแผ่นซีดีรอมเท่ากันทั้งหมด เพราะว่าความเร็วที่แท้จริงนั้นจะขึ้นอยู่ กับว่าข้อมูลที่กำลังอ่าน อยู่ในตำแหน่งไหนบนแผ่นซีดี ถ้าข้อมูลอยู่ในตำแหน่งด้านใน หรือวงในของแผ่นซีดี ก็จะมีความเร็วในการเข้าถึงสูง แต่ถ้าข้อมูลอยู่ด้านนอกหรือวงนอกของแผ่น ก็จะทำให้ความเร็วลดลงไป
แคชและบัฟเฟอร์ ไดร์ฟซีดีรอมรุ่นใหม่ๆ มักจะมีหน่วยความจำที่เรียกว่าแคชหรือบัพเฟอร์ติดตั้งมาบนบอร์ดของซีดีรอมไดรว์ มาด้วย แคชหรือบัพเฟอร์ที่ว่านี้ก็คือชิปหน่วยความจำธรรมดาที่ติดตั้งไว้เพื่อเก็บข้อมูลชั่วคราวก่อนที่จะส่ง ข้อมูลไปประมวลผลต่อไป เพื่อช่วยเพิ่มความเร็วในการอ่านข้อมูลจากไดร์ฟซีดีรอม ซึ่งแคชนี้มีหน้าที่เหมือน กับแคชในฮาร์ดดิกส์ ที่จะช่วยประหยัดเวลา ในการอ่านข้อมูลจากแผ่นซีดี
อินเตอร์เฟซของไดร์ฟซีดีรอม อินเตอร์เฟซของไดร์ฟซีดีรอมมีอยู่ 3 ชนิดคือ IDE มีความเร็วในการส่งถ่ายข้อมูลอยู่ในขั้น ที่ยอมรับได้ ชนิด SCSI มีความเร็วในการส่งถ่ายข้อมูลสูง เหมาะสำหรับนำมาใช้เป็นซีดีเซิร์ฟเวอร์ เพราะต้องการความเร็ว และความแน่นอนในการส่งถ่ายข้อมูลมากว่า และแบบ USB ซึ่งมีอยู่ 2 เวอร์ชั่น คือ 1.1 และ 2.0 ซึ่งความเร็วในการส่งถ่ายข้อมูลต่างกัน ไดร์ฟซีดีรอมจะมีอยู่ 2 แบบ คือ แบบติดตั้งภายใน และแบบติดตั้งภายนอก
เทคโนโลยีซีดีรอม เทคโนโลยีซีดีรอมแบบที่นิยมใช้กันมีอยู่ 2 ประเภทคือ CLV (Constant Linear Velocity) และ CAV (Constant Angular Velocity) CLV จะทำงานที่ความเร็วในการส่งผ่านข้อมูลที่แน่นอน (ความเร็ว X) แต่มอเตอร์ นั้นหมุนที่ความเร็วระดับต่างๆ กันขึ้นอยู่กับเนื้อที่ในการเก็บข้อมูล โดยหากอ่านข้อมูลบริเวณด้านในของแผ่นซีดี ตัวไดร์ฟจะหมุนที่ความเร็วสูง แต่เมื่อมีการอ่านข้อมูลบริเวณด้านนอก ตัวไดร์ฟจะลดความเร็วรอบลง โดยความเร็วรอบจะอยู่ระหว่าง 500 ถึง 4,000 รอบต่อนาที สำหรับซีดีรอมความเร็ว 8 เท่า ซึ่งเทคโนโลยีนี้ทำการเพิ่มความเร็วในการถ่ายข้อมูลโอนข้อมูลได้ยาก เนื่องจากต้องคงความเร็ว ในการโอนถ่ายข้อมูลที่ 16 เท่านั้น เมื่อข้อมูลถูกเก็บอยู่ในพื้นที่วงในของแผ่นซีดี ตัวไดร์ฟจำเป็นต้องหมุนด้วยความเร็วสูง เพื่อให้คงอัตราการ ถ่ายโอนข้อมูลนั้นไว้ ทำให้เกิดปัญหาความร้อนและเกิดข้อผิดพลาดในการรับข้อมูลได้มากขึ้น CAV ซึ่งเป็นเทคโนโลยีที่มีการทำงานที่ต่างกันโดยตัวไดร์ฟ CAV นั้นจะมีความเร็วในการหมุนคงที่เช่นเดียวกับที่เป็นอยู่ในฮาร์ดดิสก์ เมื่อมีการอ่านข้อมูลบริเวณวงในของ แผ่นซีดีรอมนั้นตัวไดร์ฟอาจจะทำความเร็วในระดับ 8-12 เท่า แต่ประโยชน์ที่ได้จาก แต่ประโยชนที่ได้จาก ตัวไดร์ฟเทคโนโลยีนี้ก็คือเมื่อไดร์ฟ ทำการอ่านข้อมูลบริเวณวงนอกของแผ่นซีดีความเร็ว ในการอ่านจะเพิ่มขึ้น เป็น 16 เท่า เพราะเนื้อที่ด้านนอกของซีดีนั้นจะเก็บข้อมูลมากว่าพื้นที่วงในของแผ่น

CD-RW CD-RW นั้นดูคล้ายกับ CD-ROM มากต่างกับเพียงการทำงานโดย CD-ROM ทำหน้าที่อ่านอย่างเดียวแต่ CD-RW นั้นยอมให้มีการบันทึกข้อมูลและบันทึกได้หลายพันครั้ง CD-RW drive นั้นต่างจาก CD-ROM drive ทั่วๆไปตั้งแต่มันสามารถที่จะใช้ laser ในการใช้พลังงานในการทำงานที่ต่าง level กัน laser ที่ level สูงสามารถทำให้เกิดช่องที่เรียกว่า แลนด์ เพื่อใช้ในการบันทึกข้อมูลและ ใช้ laser ที่ level ต่ำในการอ่านข้อมูลโดยไมทำลายพื้นผิดของแผ่นแต่อย่างใด

CD-RW นั้นดูคล้ายกับ CD-ROM มากต่างกับเพียงการทำงานโดย CD-ROM ทำหน้าที่อ่านอย่างเดียวแต่ CD-RW นั้นยอมให้มีการบันทึกข้อมูลและบันทึกได้หลายพันครั้ง CD-RW drive นั้นต่างจาก CD-ROM drive ทั่วๆไปตั้งแต่มันสามารถที่จะใช้ laser ในการใช้พลังงานในการทำงานที่ต่าง level กัน laser ที่ level สูงสามารถทำให้เกิดช่องที่เรียกว่า แลนด์ เพื่อใช้ในการบันทึกข้อมูลและ ใช้ laser ที่ level ต่ำในการอ่านข้อมูลโดยไมทำลายพื้นผิดของแผ่นแต่อย่างใด ในการเขียนแผ่นแต่ละครั้งแต่ก่อนต้องคอยระวังไม่ให้เครื่องคอมพิวเตอร์ทำงานใดๆเลย เพราะเนื่องจากการเขียนแผ่นแต่ละครั้งต้องใช้หน่วยความจำค่อนข้างมาก แต่ปัจจุบันได้มีเทคโนโลยีที่เข้ามาช่วยทำให้ CD-RW นั้นทำงานได้ดีขึ้นคือ SafeBurn Buffer Management System (เรียกสั้น ๆ ว่า SafeBurn ) หลักการทำงานเริ่มแรกก็จะตรวจสอบ ความสามารถของแผ่นซีดีที่จะบันทึก และจะจัดการเลือกความสามารถในการบันทึกให้ตรงกับซีดีแผ่นนั้น ๆ จากนั้นจะคอยจัดการในเรื่องการทำงานไปด้วย ทำให้ทำงานได้ทั้งในการเขียนแผ่นซีดีและก็ทำงานอย่างอื่น ๆ ได้พร้อมกัน ซึ่งไดร์ฟนี้ก็มีจุดเด่นตรงที่บัฟเฟอร์ขนาดใหญ่ 8 เมกะไบต์ ทำให้รองรับข้อมูลที่ไหลมาเก็บได้มากกว่าถ้าจะให้เหมาะที่สุดสำหรับ การใช้งานในระดับยูสเซอร์ทั่วไปแบบที่ติดตั้งภาย ในโดยใช้อินเทอร์เฟซแบบ IDE แผ่น CD-R CD-WORM (Write Once Read : WOR) แผ่น CD ที่สามารถบันทึกได้ โดยใช้โปรแกรมช่วยในการบันทึก และใช้เครื่อง Recordable CD เป็นตัวบันทึก แต่การบันทึกนั้นจะใช้ได้เพียงครั้งเดียวเท่านั้น ข้อสังเกต ให้ดูคำว่า CD-R บนแผ่น CD

แผ่น CD-RW แผ่น CD ที่สามารถบันทึกซ้ำได้ คล้ายกับ hard disk หรือแผ่นดิสก์ ข้อสังเกตว่าแผ่นไหนเป็น CD-RW ให้ดูว่ามี CD-RW บนแผ่น CD สำหรับการบันทึกของแผ่น CD-RW จะเป็นไปในลักษณะที่เรียกว่า multi-sessions เทคโนโลยีของ CD-RW นั้นจะแตกต่างจาก CD-R เนื่องจากต้องมีการบันทึกซ้ำ โดยสารเคมีที่เคลือบบนแผ่น CD-RW นั้นจะสามารถเปลี่ยนแปลงได้เมื่อได้รับความร้อนถึงจุด ๆ หนึ่ง

DVD DVD นั้นเป็นมาตรฐานบน Digital Versatile Disc แต่รู้จักกันในชื่อ Digital Video Disk สามารถเก็บข้อมูลได้มาก และให้คุณภาพของภาพและเสียงที่เหนือกว่าแผ่นซีดีรอม การพัฒนาของดีวีดีนั้นเริ่มต้นจาก DVD-ROM ที่สามารถอ่านแผ่นได้อย่างเดียว จนมาเป็น DVD-R ซึ่งสามารถบันทึกลงบนแผ่น DVD ในที่สุดกลายมาเป็น DVD-RW ซึ่งนอกจากจะอ่านแผ่นดีวีดีทั่วไปได้แล้ว ยังสามารถบันทึกข้อมูลซ้ำลงบนแผ่นดีวีดีได้อีกด้วย เครื่อง DVD-RW นั้นจะอาศัยเทคโนโลยีการบันทึกแผ่นแบบ Phase changing ช่วยให้แผ่นที่ทำการบันทึกมา สามารถนำไปใช้กับเครื่องเล่นดีวีดีแบบต่าง ๆ ที่มีวางจำหน่ายในปัจจุบัน

หลักการทำงานของเครื่อง DVD-RW สำหรับแนวความคิดของแผ่นซีดี หรือดีวีดี ประกอบกันเป็นชั้น หลายชั้น และแบ่งตามหน้าที่ โดยชั้นแรกจะเป็นส่วนของสกรีนรูปภาพหรือตัวหนังสือลงบนแผ่นครับอาจจะไม่มีก็ได้ ส่วนชั้นที่ 2 เป็นชั้นไว้สำหรับป้องกันรอยขีดข่วน ชั้นที่3 นั้นเป็นเป็นเรซิน ไว้สำปรับป้องกัน รังสียูวี เนื่องจากอาจทำให้มีผลกับข้อมูลได้ ชั้นต่อมาเป็นชั้นซึ่งไว้ทำปฏิกิริยากับแสงเลเซอร์ ทำให้สามารถบันทึกได้ซ้ำหลายเที่ยว ต่อจากนั้นจะเป็นชั้นที่บันทึกข้อมูลจะมีอยู่ 3 ชั้นและจะมีหน้าที่แตกต่างกันไป จบด้วยชั้นสุดท้ายซึ่งทำหน้าที่ป้องกันรอยขีดข่วน สำหรับหลักการทำงานของเครื่องดีวีดีอาร์ดับบลิวไม่ได้แตกต่างกับเครื่องซีดีอาร์ดับบลิว ทำงานที่ย่านความยาวคลื่น 780 nanometer โดยเมื่อมีการเริ่มบันทึกข้อมูลลงแผ่นลำแสงเลเซอร์จะยิงแสงมากระทบกับแผ่นที่บันทึก ทำให้เกิดหลุมขึ้นมา โดยจะมีอยู่ 2 ลักษณะ คือ ส่วนที่เรียกว่า Lands (พื้น) และส่วนที่เรียกว่า Pits (หลุม) โดยจะแปลงค่าทั้ง 2 ลักษณะเป็นสัญญาณดิจิตอล คือ เป็น 0 กับ 1 เป็นรหัสที่เครื่องสามารถเข้าใจได้ ซึ่งจะเริ่มบันทึกจากวงในที่สุดของ ทำไมหลักการทำงานเหมือนกัน แต่ทำไมแผ่นดีวีดี จึงสามารถบันทึกข้อมูลได้มากกว่า แผ่นซีดีธรรมดา หลายเท่าตัวก็เนื่องจากพื้นผิวที่แผ่นของดีวีดี มีขนาดที่เล็กว่าซีดีครับ โดยพื้นผิวของซีดีทั่วไปมีขนาด 1.6 ไมครอน แต่ถ้าเทียบกับ ดีวีดี จะพื้นผิวเพียง 0.74 ไมครอน จึงเป็นสาเหตุให้แผ่นดีวีดีสามารถรองรับความจุที่มากกว่า รูปแบบของ DVD ในการเก็บข้อมูลจะบันทึกเป็น layer ซึ่งมีทั้งแบบ 2 มิติ ไปยัง 3 มิติ ซึ่งปัจจุบันนั้นในแต่ละชั้นจะสามารถจุได้ถึง 15 GB/Layer และคาดว่าจะพัฒนาได้ถึง 45 GB/Layer ข้อมูลที่ถูกบันทึกลงไปก็จะมีจำนวนมากน้อยไม่เท่ากันตามมาตรฐาน

disk drive

เครื่องจานแม่เหล็ก (disk drive)

เครื่องจานแม่เหล็ก (disk drive) เป็นเครื่องที่ใช้อ่านและบันทึกข้อมูลบนจานแม่เหล็ก มีหลักการทำงานคล้ายเครื่องเล่นจานเสียงธรรมดาทั่ว ๆ ไป แต่แทนที่จะมีเข็มกลับมีหัวอ่านและหรือหัวบันทึก (read-write head) คล้ายเครื่องแถบแม่เหล็กที่เคลื่อนที่เข้าออกได้ เครื่องจานแม่เหล็ก มีสองแบบ คือ แบบจานติดอยู่กับเครื่อง (fixed disk) และแบบยกจานออกเปลี่ยนได้ (removable disk)
จานแม่เหล็กส่วนใหญ่ทำด้วยพลาสติก มีรูปร่างเป็นจานกลมคล้ายจานเสียงธรรมดา แต่ฉาบผิวทั้งสองข้างด้วยสารแม่เหล็กเฟอรัสออกไซด์ การบันทึกทำบนผิวของสารแม่เหล็กแทนที่จะเซาะเป็นร่องเล็ก ๆ การอ่านและการบันทึกข้อมูลกระทำโดยใช้หัวอ่านที่ติดตั้งไว้บนแผงที่สามารถเลื่อนเข้าออกได้
ข้อมูลจะถูกบันทึกไว้บนรอยทางวงกลมบนผิวจานซึ่งมีจำนวนต่าง ๆ เช่น 100-500 รอยทาง ขนาดเส้นผ่านศูนย์กลางของจานมีตั้งแต่ 1-3 ฟุต สามารถบันทึกตัวอักษรได้หลายล้านตัวอักษร การบันทึกใช้บันทึกทีละบิตโดยใช้แปดบิตต่อหนึ่งไบต์ จานแม่เหล็กหมุนเร็วประมาณ 1,500-1,800 รอบต่อนาที สามารถค้นหาข้อมูลด้วยเวลาเฉลี่ยประมาณ 50 มิลลิวินาที สามารถย้ายข้อมูลด้วยอัตราเร็วสูงถึง 320,000 ไบต์ต่อวินาที ขอให้เราสังเกตว่าเวลาเฉลี่ยเหล่านี้เป็นเวลาที่ช้ากว่าเครื่องรุ่นใหม่ ๆ มาก
ถ้าต้องการเก็บข้อมูลจำนวนมาก เขาจะใช้จานแม่เหล็กที่มีจำนวน 2 หรือ 6 หรือ 12 จานมาติดตั้งซ้อนกันตามแนวดิ่ง รวมกันเป็นหนึ่งหน่วย เรียกว่า ดิสก์แพ็ค (disk pack) ซึ่งเราสามารถยกดิสก์แพ็คเข้าออกจากเครื่องได้ การทำเช่นนี้ ทำให้จานแม่เหล็กสามารถทำหน้าที่คล้ายแถบแม่เหล็ก
แรม (RAM)
RAM ย่อมาจากคำว่า Random-Access Memory เป็นหน่วยความจำของระบบ มีหน้าที่รับข้อมูลเพื่อส่งไปให้ CPU ประมวลผลจะต้องมีไฟเข้า Module ของ RAM ตลอดเวลา ซึ่งจะเป็น chip ที่เป็น IC ตัวเล็กๆ ถูก pack อยู่บนแผงวงจร หรือ Circuit Board เป็น module
เทคโนโลยีของหน่วยความจำมีหลักการที่แตกแยกกันอย่างชัดเจน 2 เทคโนโลยี คือหน่วยความจำแบบ DDR หรือ Double Data Rate (DDR-SDRAM, DDR-SGRAM) ซึ่งเป็นเทคโนโลยีที่พัฒนาต่อเนื่องมาจากเทคโนโลยีของหน่วยความจำแบบ SDRAM และ SGRAM และอีกหนึ่งคือหน่วยความจำแบบ Rambus ซึ่งเป็นหน่วยความจำที่มีแนวคิดบางส่วนต่างออกไปจากแบบอื่น


SDRAM
รูปแสดง SDRAM

อาจจะกล่าวได้ว่า SDRAM (Synchronous Dynamic Random Access Memory) นั้นเป็น Memory ที่เป็นเทคโนโลยีเก่าไปเสียแล้วสำหรับยุคปัจจุบัน เพราะเป็นการทำงานในช่วง Clock ขาขึ้นเท่านั้น นั้นก็คือ ใน1 รอบสัญญาณนาฬิกา จะทำงาน 1 ครั้ง ใช้ Module แบบ SIMM หรือ Single In-line Memory Module โดยที่ Module ชนิดนี้ จะรองรับ datapath 32 bit โดยทั้งสองด้านของ circuite board จะให้สัญญาณเดียวกัน

DDR - RAM

รูปแสดง DDR - SDRAM

หน่วยความจำแบบ DDR-SDRAM นี้พัฒนามาจากหน่วยความจำแบบ SDRAM เอเอ็มดีได้ทำการพัฒนาชิปเซตเองและให้บริษัทผู้ผลิตชิปเซตรายใหญ่อย่าง VIA, SiS และ ALi เป็นผู้พัฒนาชิปเซตให้ ปัจจุบันซีพียูของเอเอ็มดีนั้นมีประสิทธิภาพโดยรวมสูงแต่ยังคงมีปัญหาเรื่องความเสถียรอยู่บ้าง แต่ต่อมาเอเอ็มดีหันมาสนใจกับชิปเซตสำหรับซีพียูมากขึ้น ขณะที่ทางเอเอ็มดีพัฒนาชิปเซตเลือกให้ชิปเซต AMD 760 สนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR เพราะหน่วยความจำแบบ DDR นี้ จัดเป็นเทคโนโลยีเปิดที่เกิดจากการร่วมมือกันพัฒนาของบริษัทยักษ์ใหญ่อย่างเอเอ็มดี, ไมครอน, ซัมซุง, VIA, Infineon, ATi, NVIDIA รวมถึงบริษัทผู้ผลิตรายย่อยๆ อีกหลายDDR-SDRAM เป็นหน่วยความจำที่มีบทบาทสำคัญบนการ์ดแสดงผล 3 มิติ

Rambus
รูปแสดง Rambus
Rambus นั้นทางอินเทลเป็นผู้ที่ให้การสนับสนุนหลักมาตั้งแต่แรกแล้ว Rambus ยังมีพันธมิตรอีกเช่น คอมแพค, เอชพี, เนชันแนล เซมิคอนดักเตอร์, เอเซอร์ แลบอเรทอรีส์ ปัจจุบัน Rambus ถูกเรียกว่า RDRAM หรือ Rambus DRAM ซึ่งออกมาทั้งหมด 3 รุ่นคือ Base RDRAM, Concurrent RDRAM และ Direct RDRAM RDRAM แตกต่างไปจาก SDRAM เรื่องการออกแบบอินเทอร์-เฟซของหน่วยความจำ Rambus ใช้วิธีการจัด address การจัดเก็บและรับข้อมูลในแบบเดิม ในส่วนการปรับปรุงโอนย้ายถ่ายข้อมูล ระหว่าง RDRAM ไปยังชิปเซตให้มีประสิทธิภาพสูงขึ้น มีอัตราการส่งข้อมูลเป็น 4 เท่าของความเร็ว FSB ของตัว RAM คือ มี 4 ทิศทางในการรับส่งข้อมูล เช่น RAM มีความเร็ว BUS = 100 MHz คูณกับ 4 pipline จะเท่ากับ 400 MHz
วิธีการเพิ่มประสิทธิภาพในการขนถ่ายข้อมูลของ RDRAM นั้นก็คือ จะใช้อินเทอร์เฟซเล็ก ๆ ที่เรียกว่า Rambus Interface ซึ่งจะมีอยู่ที่ปลายทางทั้ง 2 ด้าน คือทั้งในตัวชิป RDRAM เอง และในตัวควบคุมหน่วยความจำ (Memory controller อยู่ในชิปเซต) เป็นตัวช่วยเพิ่มแบนด์วิดธ์ให้ โดย Rambus Interface นี้จะทำให้ RDRAM สามารถขนถ่ายข้อมูลได้สูงถึง 400 MHz DDR หรือ 800 เมกะเฮิรตซ์ เลยทีเดียว
แต่การที่มีความสามารถในการขนถ่ายข้อมูลสูง ก็เป็นผลร้ายเหมือนกัน เพราะทำให้มีความจำเป็นต้องมี Data path หรือทางผ่านข้อมูลมากขึ้นกว่าเดิม เพื่อรองรับปริมาณการขนถ่ายข้อมูลที่เพิ่มขึ้น ซึ่งนั่นก็ส่งผลให้ขนาดของ die บนตัวหน่วยความจำต้องกว้างขึ้น และก็ทำให้ต้นทุนของหน่วยความจำแบบ Rambus นี้ สูงขึ้นและแม้ว่า RDRAM จะมีการทำงานที่ 800 เมกะเฮิรตซ์ แต่เนื่องจากโครงสร้างของมันจะเป็นแบบ 16 บิต (2 ไบต์) ทำให้แบนด์วิดธ์ของหน่วยความจำชนิดนี้ มีค่าสูงสุดอยู่ที่ 1.6 กิกะไบต์ต่อวินาทีเท่านั้น (2 x 800 = 1600) ซึ่งก็เทียบเท่ากับ PC1600 ของหน่วยความจำแบบ DDR-SDRAM
สัญญาณนาฬิกา DDR-SDRAM จะมีพื้นฐานเหมือนกับ SDRAM ทั่วไปมีความถี่ของสัญญาณนาฬิกาเท่าเดิม (100 และ 133 เมกะเฮิรตซ์) เพียงแต่ว่า หน่วยความจำแบบ DDR นั้น จะสามารถขนถ่ายข้อมูลได้มากกว่าเดิมเป็น 2 เท่า เนื่องจากมันสามารถขนถ่ายข้อมูลได้ทั้งในขาขึ้นและขาลงของหนึ่งรอบสัญญาณนาฬิกา ในขณะที่หน่วยความจำแบบ SDRAM สามารถขนถ่ายข้อมูลได้เพียงขาขึ้นของรอบสัญญาณนาฬิกาเท่านั้น ด้วยแนวคิดง่าย ๆ แต่สามารถเพิ่มแบนด์วิดธ์ได้เป็นสองเท่า และอาจจะได้พบกับหน่วยความจำแบบ DDR II ซึ่งก็จะเพิ่มแบนด์วิดธ์ขึ้นไปอีก 2 เท่า จากหน่วยความจำแบบ DDR (หรือเพิ่มแบนด์วิดธ์ไปอีก 4 เท่า เมื่อเทียบกับหน่วยความจำแบบ SDRAM) ซึ่งก็มีความเป็นไปได้สูง เพราะจะว่าไปแล้วก็คล้ายกับกรณีของ AGP ซึ่งพัฒนามาเป็น AGP 2X 4X และ AGP 8X
หน่วยความจำแบบ DDR จะใช้ไฟเพียง 2.5 โวลต์ แทนที่จะเป็น 3.3 โวลต์เหมือนกับ SDRAM ทำให้เหมาะที่จะใช้กับโน้ตบุ๊ก และด้วยการที่พัฒนามาจากพื้นฐานเดียว DDR-SDRAM จะมีความแตกต่างจาก SDRAM อย่างเห็นได้ชัดอยู่หลายจุด เริ่มตั้งแต่มีขาทั้งหมด 184 pin ในขณะที่ SDRAM จะมี 168 pin อีกทั้ง DDR-SDRAM ยังมีรูระหว่าง pin เพียงรูเดียว ในขณะที่ SDRAM จะมี 2 รู ซึ่งนั่นก็เท่ากับว่า DDR-SDRAM นั้น ไม่สามารถใส่ใน DIMM ของ SDRAM ได้ หรือต้องมี DIMM เฉพาะใช้ร่วมกันไม่ได้
การเรียกชื่อ RAM Rambus ซึ่งใช้เรียกชื่อรุ่นหน่วยความจำของตัวเองว่า PC600, PC700 และ ทำให้ DDR-SDRAM เปลี่ยนวิธีการเรียกชื่อหน่วยความจำไปเช่นกัน คือแทนที่จะเรียกตามความถี่ของหน่วยความจำว่าเป็น PC200 (PC100 DDR) หรือ PC266 (PC133 DDR) กลับเปลี่ยนเป็น PC1600 และ PC2100 ซึ่งชื่อนี้ก็มีที่มาจากอัตราการขนถ่ายข้อมูลสูงสุดที่หน่วยความจำรุ่นนั้นสามารถทำได้ ถ้าจะเปรียบเทียบกับหน่วยความจำแบบ SDRAM แล้ว PC1600 ก็คือ PC100 MHz DDR และ PC2100 ก็คือ PC133 MHz DDR เพราะหน่วยความจำที่มีบัส 64 บิต หรือ 8 ไบต์ และมีอัตราการขนถ่ายข้อมูล 1600 เมกะไบต์ต่อวินาที ก็จะต้องมีความถี่อยู่ที่ 200 เมกะเฮิรตซ์ (8 x 200 = 1600) หรือถ้ามีแบนด์วิดธ์ที่ 2100 เมกะไบต์ต่อวินาที ก็ต้องมีความถี่อยู่ที่ 266 เมกะเฮิรตซ์ (8 x 266 = 2100)
อนาคตของ RAM บริษัทผู้ผลิตชิปเซตส่วนใหญ่เริ่มหันมาให้ความสนใจกับหน่วยความจำแบบ DDR กันมากขึ้น อย่างเช่น VIA ซึ่งเป็นบริษัทผู้ผลิตชิปเซตรายใหญ่ของโลกจากไต้หวัน ก็เริ่มผลิตชิปเซตอย่าง VIA Apollo KT266 และ VIA Apollo KT133a ซึ่งเป็นชิปเซตสำหรับซีพียูในตระกูลแอธลอน และดูรอน (Socket A) รวมถึงกำหนดให้ VIA Apolle Pro 266 ซึ่งเป็นชิปเซตสำหรับเซลเลอรอน และเพนเทียม (Slot1, Socket 370) หันมาสนับสนุนการทำงานร่วมกับหน่วยความจำแบบ DDR-SDRAM แทนที่จะเป็น RDRAM
แนวโน้มที่น่าจะเป็นไปได้มากที่สุดของทั้ง DDR II กับ RDRAM เวอร์ชันต่อไป เทคโนโลยี quard pump คือการอัดรอบเพิ่มเข้าไปเป็น 4 เท่า เหมือนกับในกรณีของ AGP ซึ่งนั่นจะทำให้ DDR II และ RDRAM เวอร์ชันต่อไป มีแบนด์-วิดธ์ที่สูงขึ้นกว่างปัจจุบันอีก 2 เท่า ในส่วนของ RDRAM นั้น การเพิ่มจำนวนสล็อตในหนึ่ง channel ก็น่าจะเป็นหนทางการพัฒนาที่อาจเกิดขึ้น ซึ่งนั่นก็จะเป็นการเพิ่มแบนด์วิดธ์ของหน่วยความจำขึ้นอีกเป็นเท่าตัวเช่นกัน และทั้งหมดที่ว่ามานั้น คงจะพอรับประกันได้ว่า การต่อสู้ระหว่าง DDR และ Rambus คงยังไม่จบลงง่าย ๆ และหน่วยความจำแบบ DDR ยังไม่ได้เป็นผู้ชนะอย่างเด็ดขาด

HARDDISK

HARDDISK


คอมพิวเตอร์มีส่วนที่สำคัญคือ ส่วนประมวลผล ส่วนรับข้อมูล และก็ส่วนแสดงผล แต่ก่อนที่คอมพิวเตอร์จะนำข้อมูลมาประมวลผลก็ต้องมีข้อมูล ซึ่งข้อมูลนั้นจะต้องถูกนำมาจากที่แห่งหนึ่งนั้นก็คือส่วนที่เรียกว่า Storage ซึ่งคอมพิวเตอร์ในยุคแรกจะเป็นกระดาษที่เป็นรู ซึ่งใช้งานยาก จากนั้นได้พัฒนามาใช้ แผ่นพลาสติกที่เครื่องด้วยสารแม่เหล็ก ที่เรียกว่า Diskette ต่อมาเมื่อข้อมูลมากขึ้นจำนวนการเก็บข้อมูลก็มากขั้นทำให้การเก็บข้อมูลลงบนแผ่น Diskette นั้นไม่เพียงพอ ต่อมาก็ทำการพัฒนามาเป็น Hard Disk ในปัจจุบัน ระบบของ Hard disk ต่างจากแผ่น Diskette โดยจะมีจำนวนหน้าในการเก็บข้อมูลมากกว่า 2 หน้า ในการเก็บข้อมูลของ Hard Disk นั้นก็ไม่ต่างกับการเก็บข้อมูลลงบน Diskette ทั่วไปมากนัก Hard Disk ส่วนใหญ่ประกอบด้วยแผ่นจานแม่เหล็กมากกว่า 2แผ่นเรียงกันอยู่บนแกน Spindle ทำให้แผ่นแม่เหล็กหมุนไปพร้อมๆกัน Hard Disk ใช้หัวอ่านเพียงหัวเดียวในการทำงาน ทั้งอ่านและเขียนข้อมูล ในการเขียนข้อมูลหัวอ่านจะได้รับกระแสไฟฟ้าผ่านเข้าสู่คอยล์ของหัวอ่าน เพื่อรับข้อมูล เป็นการแปลงความหนาแน่นของสารแม่เหล็กที่เคลือบอยู่บน Disk ออกมาให้กับ CPU เพื่อทำการประมวลผล ส่วนการเก็บข้อมูล จะเก็บอยู่ในรูปแบบของสัญญาณดิจิตอล โดยเก็บเป็นเลขฐาน 2 คือ 0 และ 1 การเก็บข้อมูลจะเริ่ม
Seek Time เป็นระยะเวลาที่แกนยืดหัวอ่านเขียน Hard Disk เคลื่อนหัวอ่านเขียนไประหว่างแทร็คของข้อมูลบน Hard Disk ซึ่งในปัจจุบัน Hard Disk จะมีแทร็คข้อมูลอยู่ประมาณ 3,000 แทร็คในแต่ละด้านของแพล็ตเตอร์ ขนาด 3.5 นิ้ว ความสามารถในการเคลื่อนที่ จากแทร็คที่อยู่ไปยังข้อมูลในบิตต่อไป อาจเป็นการย้ายตำแหน่งไปเพียง อีกแทร็คเดียวหรืออาจย้ายตำแหน่งไปมากกว่า 2,999 แทร็คก็เป็นได้ Seek time จะวัดโดยใช้หน่วยเวลาเป็น มิลลิเซก (ms) ค่าของ Seek time ของการย้ายตำแหน่งของแขนยึดหัวอ่านเขียน ไปในแทร็คถัดไปในแทร็คที่ อยู่ติดๆกันอาจใช้เวลาเพียง 2 ms ในขณะที่การย้ายตำแหน่งจากแทร็คที่อยู่นอกสุดไปหาแทร็คที่อยู่ในสุด หรือ ตรงกันข้ามจะต้องใช้เวลามากถึงประมาณ 20 ms ส่วน Average seek time จะเป็นค่าระยะเวลาเฉลี่ย ในการย้ายตำแหน่ง ของหัวเขียนอ่านไปมาแบบสุ่ม (Random) ในปัจจุบันค่า Average seek time ของ Hard Disk จะอยู่ ในช่วงตั้งแต่ 8 ถึง 14 ms แม้ว่าค่า seek จะระบุเฉพาะคุณสมบัติในการทำงานเพียง ด้านกว้างและยาวของ แผ่นดิสก์ แต่ค่า Seek time มักจะถูกใช้ในการเปรียบเทียบ คุณสมบัติทางด้านความ เร็วของ Hard Disk ปกติจะเรียกรุ่นของ Hard Disk ตามระดับความเร็ว Seek ค่า Seek time ยังไม่สามารถแสดงให้ประสิทธิภาพทั้งหมดของ Hard Disk ได้ จะแสดงให้เห็นเพียงแต่การค้นหาข้อมูลในแบบสุ่ม ของตัว Drive เท่านั้น ไม่ได้แสดงในแง่ของ การอ่านข้อมูลแบบเรียงลำดับ (sequential)
Cylinder Switch Time เวลาในการสลับ Cylinder สามารถเรียกได้อีกแบบว่าการสลับแทร็ค (track switch) ในกรณีนี้แขนยึดหัวอ่านเขียนจะวางตำแหน่งของหัวอ่านเขียนอยู่เหนือ Cylinder ข้อมูลอื่น ๆ แต่มีข้อแม้ว่า แทร็คข้อมูลทั้งหมดจะต้องอยู่ใน ตำแหน่งเดียวกันของแพล็ตเตอร์อื่น ๆ ด้วย เวลาในการสลับระหว่าง Cylinder จะวัดด้วยระยะเวลาเฉลี่ยที่ตัว ไดร์ฟใช้ในการสลับจาก Cylinder หนึ่งไปยัง Cylinder อื่น ๆ เวลาในการสลับ Cylinder จะวัดด้วยหน่วย ms
Head Switch Time เป็นเวลาสลับการทำงานของหัวอ่านเขียน แขนยึด หัวอ่านเขียนจะเคลื่อนย้ายหัวอ่านเขียนไปบนแพล็ตเตอร์ที่อยู่ในแนวตรงกัน หัวอ่านเขียนเพียงหัวเดียวทำหน้าที่อ่านหรือบันทึกข้อมูลในเวลาใดเวลาหนึ่ง ระยะเวลาในการสลับกันทำงานของหัวอ่านเขียนจะวัดด้วยเวลาเฉลี่ยที่ตัวไดร์ฟใช้สลับ ระหว่างหัวอ่านเขียน สองหัวในขณะ อ่านบันทึกข้อมูล เวลาสลับหัวอ่านเขียนจะวัดเป็นหน่วย ms
Rotational Latency เป็นช่วงเวลาที่คอยการหมุนของแผ่นดิสก์ภายในการหมุนภายใน Hard Disk เกิดขึ้นเมื่อหัวอ่านเขียนวางตำแหน่งอยู่เหนือแทร็คข้อมูลที่เหมาะสม ระบบการทำงานของหัวอ่านเขียนข้อมูลจะรอให้ตัวไดร์ฟ หมุนแพล็ตเตอร์ไปยังเซ็กเตอร์ที่ถูกต้อง ช่วงระยะเวลาที่รอคอยนี้เองที่ถูกเรียกว่า Rotational Latency ซึ่งจะวัดเป็นหน่วย ms แต่ระยะเวลาก็ขึ้นอยู่กับ RPM (จำนวนรอบต่อนาที)
การควบคุม Hard Disk Hard Disk จะสามารถทำงานได้ต้องมีการควบคุมจาก CPU โดยจะมีการส่งสัญญาณการใช้งานไปยัง Controller Card ซึ่ง Controller Card แบ่งออกได้ประมาณ 5 ชนิด ซึ่งจะกล่าวถึงเพียง 3 ชนิดที่ยังคงมีและใช้อยู่ในปัจจุบัน
IDE (Integrated Drive Electronics) ระบบนี้มีความจุใกล้เคียงกับแบบ SCSI แต่มีราคาและความเร็วในการขนย้ายข้อมูลต่ำกว่า ตัวควบคุม IDE ปัจจุบันนิยมรวมอยู่ในแผงตัวควบคุม

รูปแสดง Slot IDE บนแผงวงจร Mainboard
SCSI (Small Computer System Interface) เป็น Controller Card ที่มี Processor อยู่ในตัวเองทำให้เป็นส่วนเพิ่มขยายกับแผงวงจรใหม่ ใช้ควบคุมอุปกรณ์เสริมอื่นที่เป็นระบบ SCSI ได้ เช่น Modem CD-ROM Scanner และ Printer ใน Card หนึ่งๆจะสนับสนุนการต่ออุปกรณ์ได้ถึง 8 ตัว

รูปแสดง อุปกรณ์ Hard Disk ที่เป็น SCSI

Serial ATA (Advanced Technology Attachment) เปิดตัวครั้งแรกในวันที่ 26 มิถุนายน 2545 งาน PC Expo ใน New York ประเทศสหรัฐอเมริกา หลังจากที่มีการนำเสนอ Parallel ATA มากว่า 20 ปี รวมถึงเทคโนโลยีอื่นๆที่ทำให้การอ่านข้อมูลได้เร็วขึ้น วันนี้บริษัท Intel Seagate และบริษัทอื่นๆ คอยช่วยกันพัฒนาให้เกิดเทคโนโลยี Serial ATA ขึ้นมาแทนที่ Serial ATA มีความเร็วในเข้าถึงข้อมูลถึง 150 Mbytes ต่อ วินาที และให้ผลตอบสนองในการทำงานได้เร็วมากในส่วนของ extreme application เช่น Game Home Video และ Home Network Hub มีจำนวน pin น้อยกว่า Parallel ATA Serial ATA II ของทาง Seagate คาดว่าจะออกวางตลาดภายในปี 2546 และจะทำงานได้กับ Serial ATA 1.0 ทั้งทางด้าน products และ maintain software


รูปแสดง สายสัญญาณแบบ Serial ATA

การบำรุงรักษา การ Defrag ซึ่งก็คือการจัดเรียงข้อมูลใน Hard Disk เสียใหม่เพื่อให้ Hard Disk ทำงานได้อย่างมีประสิทธิภาพที่สุด ทุกครั้งที่เราเขียนข้อมูล ไม่ว่าจะด้วยการติดตั้งโปรแกรมใหม่ หรือว่าใช้คำสั่ง Save จากโปรแกรมใดๆ ก็ตาม หรือการ Download ข้อมูล Program จาก Internet รวมไปถึงการ Copy ข้อมูลลงไปใน Hard Disk นั้น สิ่งที่เครื่อง คอมพิวเตอร์ต้องสั่งให้ Hard Disk ทำคือ เขียนข้อมูลเหล่านั้นลงไปบนพื้นที่ว่างบน Hard Disk ซึ่งการเขียนข้อมูลของ Hard Disk นั้นจะไม่เหมือนกับการเขียนข้อมูลในหนังสือหรือกระดาษอย่างที่เราทำกัน แต่โครงสร้างของ Drive จะแบ่งออกเป็นส่วนย่อยๆ เป็นบล็อกอย่างที่เรารู้จักกันคือ Cluster ในการเขียนข้อมูลนั้น เครื่องคอมพิวเตอร์ต้องเข้าไปจองพื้นที่เป็น Cluster โดยที่ไม่สนใจว่าจะใช้เต็มพื้นที่หรือไม่ ถ้าข้อมูลมีขนาดใหญ่เกินไปก็จะใช้พื้นที่หลายๆ Cluster ซึ่งจะว่าไปแล้วในตอนแรกนั้นข้อมูลก็ยังคงจะเรียงกันอย่างเป็นระเบียบอยู่อย่างที่ควรจะเป็น แต่ว่าเมื่อมีการใช้งานหนักเข้าเรื่อยๆ โดยเฉพาะ Application ต่างๆ บนวินโดวส์จำเป็นต้องมีการเปิด File หลายๆ File พร้อมกัน รวมทั้งมีการเขียนและลบ File บ่อยๆ จะทำให้ข้อมูลกระจายออกไป







Mainboard

Mainboard
Mainboard หรือ Systemboard หรือ Motherboard
หมายถึง แผงวงจรหลักของเครื่องคอมพิวเตอร์ที่รวมเอา Chip และ IC-Integrated-Circuit ชิ้นเล็ก ๆ ที่คุมการทำงานของอุปกรณ์ต่าง ๆเข้าไว้ด้ยกันเละมีช่อง (Slot หรือ Socket ) สำหรับเสียบซีพียู , แรม Cards ตามภาพเป็น Mainboard แบบ On-Board ผู้ขายจะมอบคู่มือของแผงวงจรหลักให้ สิ่งที่อยู่บน mainboard มีลักษณะและหน้าที่ใช้งานดังนี้
- BIOS (Basic Input/output System) ทำหน้าที่กำหนดและเก็บข้อมูลขั้นตอนของการ Boot เครื่องคอมพิวเตอร์ โดย BIOS จำเป็นต้องมี Battery ทำหน้าที่ให้ไฟเลี้ยงด้วยเพื่อมิให้ข้อมูลหายในช่วงที่ปิดเครื่องคอมพิวเตอร์



- Socket เป็นแป้นพลาสติกสีขาวสำหรับใส่ CPU จำนวนขาของ CPU ต้องเท่ากับจำนวนขาของ Socket ด้วย แต่ mainboard บางรุ่นไม่มี Socket แต่มี Slot แทนซึ่งทำหน้าที่เหมือน Socket คือมีไว้สำหรับติดตั้ง CPU
- Slot PCI เป็น slot สีขาว ทำหน้าที่สำหรับเป็นที่ติดตั้ง Card ต่างๆ มีอัตราส่งข้อมูลอยู่ที่ 32 bit
- Slot AGP เป็น slot สั้นกว่า PCI เล็กน้อย สีน้ำตาล สำหรับติดตั้ง Card VGA มีความเร็วในการส่งข้อมูล 64 bit
- Slot RAM มีหลายแบบหลายชนิดตามชนิดของแรม เช่น SDRAM, RDRAM, DDRRAM
- Chipset ทำหน้าที่รับส่งข้อมูลระหว่าง CPU, RAM, Slot ต่างๆ และ Controller ต่างๆ Chipset มีความสำคัญมากเวลาเลือกซื้อ Mainboard ควรดูว่า CPU เราสามารถใช้งานร่วมกับ Chipset ได้หรือไม่

cpu


ซีพียู (cpu)

ซีพียู CPU
ซีพียู CPU (Central Processing Units) หรือ หน่วยประมวลผลกลาง คือส่วนที่เรียกว่าเป็นหัวใจของเครื่องคอมพิวเตอร์นั่นเอง เพราะการทำงานทั้งหมดไม่ว่าจะเป็นการคำนวณ การย้ายข้อมูล การตัดสินใจ ล้วนเกิดขึ้นที่นี่ทั่งสิ้น เพียงแต่ว่าซีพียูจะต้องมีอุปกรณ์อื่น ๆ ทำงานร่วมด้วย เพื่อให้สามารถติดต่อกับโลกภายนอกได้นั่นก็คือการับข้อมูลและแสดงผลข้อมูล
หน้าที่ของ CPU (Central Processing Units)คือปฏิบัติตามชุดคำสั่งและควบคุมการโอนย้ายและประมวลผลข้อมูลทั้งหมด ส่วนต่างๆของซีพียูแยกเป็น ส่วนได้ดังนี้
1. ระบบเลขฐานสอง หรือ ไบนารี (Binary) ประกอบด้วยตัวเลข 2 ตัวคือ 0 กับ 1 มีความหมายว่า ใช่ หรือ ไม่ใช่ หรือ ถูก ผิด คำสั่งทุกคำสั่งที่ ไมโครโพรเซสเซอร์รับมาประกอบจากคำสั่งหลายๆคำสั่งที่โปรแกรมเมอร์คอมไพล์มาจากภาษาใดภาษาหนึ่ง เช่น (BASIC, COBAL, C) เป็นต้น ก่อนที่คอมพิวเตอร์จะเข้าใจคำสั่งเหล่านี้ จะต้องแปลงให้เป็นไบนารีก่อน ซึ่งเป็นกระบวนการที่เกิดขึ้นใน decode unit ของไมโครโพรเซสเซอร์
2. แอดเดรส คือตัวเลขที่ใช้กำหนดตำแหน่งที่อยู่ของข้อมูลในหน่วยความจำหรือStorageข้อมูลที่ซีพียูประมวลผลจะแสดงด้วยแอดเดรสของข้อมูล ไม่ใช่ค่าจริงๆของข้อมูล
3. บัส ชุดของเส้นลวดนำไฟฟ้าที่เป็นทางเดินของข้อมูลจากจุดหนึ่งไปยังอีกจุดหนึ่งบัสในคอมพิวเตอร์คือบัสข้อมูล (Data bus) หรือระบบบัส(systembus)ซึ่งเป็นเส้นทางผ่านของข้อมูลจากอุปกรณ์อินพุต/เอาต์พุตหน่วยความจำหลักและซีพียูภายในซีพียูเองก็มีบัสภายในที่ใช้ส่งผ่านข้อมูลระหว่าง หน่วยต่างๆ ที่อยู่ภายในที่ใช้ส่งผ่านข้อมูลระหว่างหน่วยต่างๆ ที่อยู่ภายในโครงสร้างย่อยในชิป
4. หน่วยความจำแคช แคชมีความสำคัญมากต่อซีพียู เพราะหากไม่มีหน่วยความจำที่เรียกว่าแคชแล้ว โปรเซสเซอร์ก็จะเสียเวลาส่วนใหญ่สำหรับการ หยุดรอข้อมูลจากแรมซึ่งทำงานช้ากว่าแคชมาก โปรเซสเซอร์จะมีแคช 2 แบบคือ แคชระดับหนึ่ง (Primary cache หรือ L1) และแคชระดับสอง (secondary cache หรือ L2) ต่างกันตรงตำแหน่ง โดย L1 cache อยู่บนซีพียู เรียกว่า on-die cache ส่วน L2 cache อยู่บนเมนบอร์ด เรียกว่า off-die แต่ในปัจจุบัน L2 cache เป็น on-die กันแล้ว หน่วยความจำแคชเป็นที่เก็บคำสั่งและข้อมูลก่อนที่จะส่งให้ซีพียู
5. ความเร็วสัญญาณนาฬิกา หมายถึงจำนวนรอบที่ซีพียูทำงานเมื่อสัญญาณนาฬิกาในเครื่องผ่านไปหนึ่งช่วงสัญญาณนาฬิกาแสดงด้วยหน่วย เมกะเฮิรตซ์ (MHz) หรือเท่ากับ 1 ล้านรอบต่อวินาที (โปรเซสเซอร์คนละชนิดหรือคนละรุ่นถึงแม้จะมีสัญญาณนาฬิกาเท่ากัน แต่อาจเร็วไม่เท่ากันก็ได้ เพราะมีโครงสร้างภายในและชุดคำสั่งที่แตกต่างกัน)
6. รีจิสเตอร์ เป็นหน่วยความจำไดนามิกขนาดเล็กที่มีบทบาทสำคัญในโครงสร้างของโปรเซสเซอร์ รีจิสเตอร์ใช้เก็บข้อมูลที่ถูกประมวลผลไว้จนกว่าจะ พร้อมที่จะส่งไปคำนวณ หรือส่งไปแสดงผลให้แก่ยูสเซอร์
7. ทรานซิสเตอร์ เป็นจุดเชื่อมต่อแบบ 3ทางอยู่ภายในวงจรของโปรเซสเซอร์ ประกอบด้วยชั้นของวัสดุที่เป็นขั้วบวก และขั้วลบ ซึ่งสามารถขยายกระ แสไฟฟ้าให้เพิ่มขึ้น หรือขัดขวางไม่ให้กระแสไฟฟ้าเคลื่อนที่ต่อ
8. Arithmetic logic unit (ALU)เป็นส่วนหนึ่งของซีพียู ใช้ในการคำนวณผลทางคณิตศาสตร์และการเปรียบเทียบเชิงตรรกะ การเปรียบเทียบ เชิงตรรกะเป็นการเปรียบเทียบค่าไบนารีเพื่อหาว่า ควรจะส่งสัญญาณไฟฟ้าผ่านเกตบางตัวในวงจรของโปรเซสเซอร์หรือไม่ การทำงานอยู่ในรูปแบบของ "ถ้า x เป็นจริง และ y เป็นเท็จ แสดงว่า z เป็นจริง"
9. Floating - Point Unit (FPU)มีหน้าที่จัดการกับการคำนวณทางคณิตศาสตร์ที่ซับซ้อนที่เกี่ยวกับเลขทศนิยมหรือตัวเลขที่เป็นเศษส่วนการคำนวณเลขทศนิยมมักเกิดขึ้นเมื่อพีซีรันโปรแกรมพวกกราฟฟิก เช่นโปรแกรม CAD หรือเกมส์ 3 มิติ
10. Control Unit หลังจากที่ซีพียูรับชุดคำสั่งหรือข้อมูลที่ผู้ใช้ป้อนเข้ามาแล้ว หน่วยควบคุมนี้จะรับหน้าที่พื้นฐาน 4 อย่างด้วยกันคือ fetch โดยการส่งแอดเดรสของคำสั่งถัดไป ไปยังแอดเดรสบัส แล้วนำค่าที่ได้ไปเก็บไว้ในแคชคำสั่งภายในซีพียู decode โดยส่งคำสั่งปัจจุบันจากแคชคำสั่งไปยัง decode unit execute เริ่มกระบวนการคำนวณทางคณิตศาสตร์และตรรกะภายใน ALU และควบคุมการไหลของข้อมูลไปยังจุดหมายปลายทางที่เหมาะสม store บันทึกผลลัพธ์จากคำสั่งไว้ในรีจิสเตอร์หรือหน่วยความจำที่เหมาะสม
11. Decode unit รับหน้าที่ดึงคำสั่งภาษาเครื่องจากแคชคำสั่ง และเปลี่ยนให้อยู่ในรูปไบนารีโค้ด เพื่อให้ ALU สามารถนำไปใช้ประมวลผล